TALARC A1 Mo TALARC

Issue Date: 01/11/2019 Chemwatch: 5256-75 Print Date: 17/03/2022

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Version No: 3.1

Product name	TALARC A1 Mo	
Chemical Name	lot Applicable	
Synonyms	7018-A1; 3.2 mm, VAC Pack 2 Kg, Part no. INEA132	
Chemical formula	Not Applicable	
Other means of identification	tion Not Available	

Relevant identified uses of the substance or mixture and uses advised against

	Low-alloy basic-coated electrode with 0.5% Mo content designed for welding low-alloy steels with high tensile strength and creep-resistant steels. Suitable for pipelines and pressure vessels with operating temperatures of about 500°C. Good impact strength at low temperatures. for welding fume: In addition to complying with any individual exposure standards for specific contaminants, where current manual welding processes are used, the fume concentration inside the welder's helmet should not exceed 5 mg/m3, when collected in accordance with the appropriate standard (AS 3640, for example).
Relevant identified uses	ES* TWA: 5 mg/m3
	TLV* TWA: 5 mg/m3, B2 (a substance of variable composition)
	OES* TWA: 5 mg/m3
	Most welding, even with primitive ventilation, does not produce exposures inside the welding helmet above 5 mg/m3. That which
	does should be controlled (ACGIH). Inspirable dust concentrations in a worker s breathing zone shall be collected and measured
	in accordance with AS 3640, for example. Metal content can be analytically determined by OSHA Method ID25 (ICP-AES) after
	total digestion of filters and dissolution of captured metals. Sampling of the Respirable Dust fraction requires cyclone separator
	devices (elutriators) and procedures to comply with AS 2985 (for example).

Details of the supplier of the safety data sheet

Registered company name	TALARC	
Address	10-16 Syme Street Brunswick VIC 3056 Australia	
Telephone	1 3 9388 0588	
Fax	+61 3 9388 0710	
Website	www.talarc.com.au	
Email	sales@talarc.com	

Emergency telephone number

Association / Organisation	TALARC	
Emergency telephone numbers	3 9388 0588 (Hours 9am-5pm AEST)	
Other emergency telephone numbers	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Carcinogenicity Category 1A, Acute Toxicity (Inhalation) Category 4	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Chemwatch Hazard Alert Code: 4

L.GHS.AUS.EN.E

Label elements

Hazard pictogram(s)	
Signal word	Danger

Hazard statement(s)

H350	May cause cancer.
H332	Harmful if inhaled.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P271	Use only outdoors or in a well-ventilated area.	
P280 Wear protective gloves and protective clothing.		
P261	P261 Avoid breathing dust/fumes.	

Precautionary statement(s) Response

P308+P313	P308+P313 IF exposed or concerned: Get medical advice/ attention.	
P312	P312 Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

Precautionary statement(s) Storage

P405 Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available		low alloy steel welding electrode
Not Available		which upon use generates:
Not Available	>60	welding fumes
Not Available		as
7439-96-5.		manganese fume
69012-64-2		silica welding fumes
7439-98-7		molybdenum fume
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

Eye Contact	 Particulate bodies from welding spatter may be removed carefully. DO NOT attempt to remove particles attached to or embedded in eye. Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital.

Skin Contact	 For "race eye", i.e. welding flash or UV light burns to the eye: Place eye pads or light clean dressings over both eyes. Seek medical assistance. For THERMAL burns: Do NOT remove contact lens Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital. If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For inst-degree burns (affecting top layer of skin) Hold burned skin under cold (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. Give over-the counter pain relivers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top layers of skin) Lo the burn by immerse in cold running water of 10-15 minutes. Use compresses if running water is not available. Do NOT break blisters or apply butter or ointments; this may cause infection. Do NOT apply ice as this tensile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. Elevate burna rea above heat level, if possible. Cover the person that. Seek medical assistance. For third-degree burns Seek medical assistance. For thind-degree burns Seek medical a		
	 Have a person with a facial burn sit up. Check pulse and breathing to monitor for shock until emergency help arrives. 		
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. 		
	Not normally a hazard due to physical form of product.		

Indication of any immediate medical attention and special treatment needed

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- ▶ The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

Both dermal and oral toxicity of manganese salts is low because of limited solubility of manganese. No known permanent pulmonary sequelae develop after acute

manganese exposure. Treatment is supportive.

[Ellenhorn and Barceloux: Medical Toxicology]

In clinical trials with miners exposed to manganese-containing dusts, L-dopa relieved extrapyramidal symptoms of both hypo kinetic and dystonic patients. For short periods of time symptoms could also be controlled with scopolamine and amphetamine. BAL and calcium EDTA prove ineffective.

[Gosselin et al: Clinical Toxicology of Commercial Products.]

For carbon monoxide intoxications:

- Administer pure oxygen by the best means possible. An oro-nasal mask is usually best. Artificial respiration is necessary wherever breathing is inadequate. Apnoeic patients have often been saved by persistent and efficient artificial ventilation. A patent airway must be carefully maintained. Patients with 40% carboxyhaemoglobin or more and an uncompensated metabolic acidosis (arterial pH less than 7.4) should be managed aggressively with ventilatory support/ hyperbaric oxygenation.
- Gastric aspiration and lavage early in the course of therapy may prevent aspiration pneumonitis and reveal the presence of ingested intoxicants.
- Avoid stimulant drugs including carbon dioxide. **DO NOT** inject methylene blue.
- ▶ Hypothermia has been employed to reduce the patient's oxygen requirement.
- Consider antibiotics as prophylaxis against pulmonary infection.
- A whole blood transfusion may be useful if it can be given early in the treatment program.
- Infuse sodium bicarbonate and balanced electrolyte solutions if blood analyses indicate a significant metabolic acidosis.
- Ancillary therapy for brain oedema may be necessary if hypoxia has been severe.
- Ensure absolute rest in bed for at least 48 hours; in severe poisonings, 2 to 4 weeks in bed may prevent sequelae.
- Watch for late neurological, psychiatric and cardiac complications. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products 5th Ed. BIOLOGICAL EXPOSURE INDEX (BEI)

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

•			,
Determinant	Sampling time	Index	Comments
Carboxyhaemoglobin in blood	end of shift	3.5% of haemoglobin	B, NS
Carbon monoxide in end-exhaled air	end of shift	20 ppm	B, NS
B: Background levels occur in specimens colle	ted from subjects NOT exposed		

NS: Non-specific determinant; also observed after exposure to other material

SECTION 5 Firefighting measures

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Welding electrodes should not be allowed to come into contact with strong acids or other substances which are corrosive to
The moonpationity	metals.

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers.
Fire/Explosion Hazard	 Welding arc and metal sparks can ignite combustibles. Non combustible. Not considered to be a significant fire risk, however containers may burn. In a fire may decompose on heating and produce toxic / corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	Clean up all spills immediately. Wear impervious gloves and safety glasses. Use dry clean up procedures and avoid generating dust. Place in suitable containers for disposal.
Major Spills	 Minor hazard. Clear area of personnel. Alert Fire Brigade and tell them location and nature of hazard. Control personal contact with the substance, by using protective equipment if risk of overexposure exists. Prevent, by any means available, spillage from entering drains or water courses. Contain spill/secure load if safe to do so. Bundle/collect recoverable product and label for recycling. Collect remaining product and place in appropriate containers for disposal. Clean up/sweep up area. Water may be required. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Keep dry. Store under cover. Protect containers against physical damage. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Packaging as recommended by manufacturer. Check that containers are clearly labelled
Storage incompatibility	Welding electrodes should not be allowed to come into contact with strong acids or other substances which are corrosive to metals.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	welding fumes	Welding fumes (not otherwise classified)	5 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	manganese fume	Manganese, fume (as Mn)	1 mg/m3	3 mg/m3	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
manganese fume	3 mg/m3	5 mg/m3	1,800 mg/m3

Chemwatch: 5256-75	Page 6 of 17	Issue Date: 01/11/2019
Version No: 3.1	TALARC A1 Mo	Print Date: 17/03/2022

Ingredient	TEEL-1	TEEL-2	TEEL-3	
silica welding fumes	45 mg/m3	500 mg/m3	3,000 mg/m3	
molybdenum fume	30 mg/m3	330 mg/m3	2,000 mg/m3	
Ingredient	Original IDLH		Revised IDLH	
welding fumes	Not Available		Not Available	
manganese fume	500 mg/m3		Not Available	
silica welding fumes	Not Available		Not Available	
molvbdenum fume	Not Available		Not Available	

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
molybdenum fume	≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Appropriate engineering	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Special ventilation requirements apply for processes which result in the generation of aluminium, copper, fluoride, manganese or zinc fume. • For work conducted outdoors and in open work spaces, the use of mechanical (general exhaust or plenum) ventilation is required as a minimum. (Open work spaces exceed 300 cubic meters per welder) • For indoor work, conducted in limited or confined work spaces, use of mechanical ventilation by local exhaust systems is mandatory. (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium) Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: welding, brazing fumes (released at relatively low velocity into moderately still air) welding, brazing fumes (released at relatively low velocity into moderately still air)			
controls	Within each range the appropriate value depends on:			
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents		
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of hig		
	3: Intermittent, low production.	3: High production, hea	-	
	4: Large hood or large air mass in motion	4: Small hood-local cor		
	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of welding or brazing fumes generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment.			
	 For outdoor work, natural ventilation is generally sufficien For indoor work, conducted in open spaces, use mechani 		plenum) ventilation. (Open work spaces	

exceed 300 cubic metres per welder)

 For work conducted in limited or confined spaces, mechanical ventilation, using local exhaust systems, is required. (In confined spaces always check that oxygen has not been depleted by excessive rusting of steel or snowflake corrosion of aluminium)

Mechanical or local exhaust ventilation may not be required where the process working time does not exceed 24 mins. (in an 8 hr. shift) provided the work is intermittent (a maximum of 5 mins. every hour). Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air)	0.5-1.0 m/s (100-200 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:	
solvent, vapours, degreasing etc., evaporating from tank (in still air).		0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)		0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)		1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).		2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:		
Lower end of the range	Upper end of the range	
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2

	meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.
Personal protection	
Eye and face protection	 Welding helmet with suitable filter. Welding hand shield with suitable filter. Goggles or other suitable eye protection shall be used during all gas welding or oxygen cutting operations. Spectacles without side shields, with suitable filter lenses are permitted for use during gas welding operations on light work, for torch brazing or for inspection. For most open welding/brazing operations, goggles, even with appropriate filters, will not afford sufficient facial protection for operators. Where possible use welding helmets or handshields corresponding to EN 175, ANSI Z49:12005, AS 1336 and AS 1338 which provide the maximum possible facial protection from flying particles and fragments. [WRIA-WTIA Technical Note 7] An approved face shield or welding helmet can also have filters for optical radiation protection, and offer additional protection against debris and sparks. UV blocking protective spectacles with side shields or welding goggles are considered primary protection, with the face shield or welding helmet considered secondary protection. The optical filter in welding goggles, face mask or helmet must be a type which is suitable for the sort of work being done. A filter suitable for gas welding, for instance, should not be used for arc welding. Face masks which are self dimming are available for arc welding, MIG, TIG and plasma cutting, and allow better vision before the arc is struck and after it is extinguished. For submerged arc welding use a lens shade which gives just sufficient arc brightness to allow weld pool control.
Skin protection	See Hand protection below
Hands/feet protection	 Avoid storage with zinc, galvanised or diecast metal (including bungs) Welding gloves conforming to Standards such as EN 12477:2001, ANSI Z49.1, AS/NZS 2161:2008 produced from leather, rubber, treated cotton, or alumininised These gloves protect against mechanical risk caused by abrasion, blade cut, tear and puncture Other gloves which protect against thermal risks (heat and fire) might also be considered - these comply with different standards to those mentioned above. One pair of gloves may not be suitable for all processes. For example, gloves that are suitable for low current Gas Tungsten Arc Welding (GTAW) (thin and flexible) would not be proper for high-current Air Carbon Arc Cutting (CAC-A) (insulated, tough, and durable)
Body protection	See Other protection below
Other protection	Before starting; consider that protection should be provided for all personnel within 10 metres of any open arc welding operation. Welding sites must be adequately shielded with screens of non flammable materials. Screens should permit ventilation at floor and ceiling levels. Overalls

Respiratory protection

Welding of powder coated metal requires good general area ventilation, and ventilated mask as local heat causes minor coating decomposition releasing highly discomforting fume which may be harmful if exposure is regular.

Welding or flame cutting of metals with chromate pigmented primers or coatings may result in inhalation of highly toxic chromate fumes. Exposures may be significant in enclosed or poorly ventilated areas

Respiratory protection not normally required due to the physical form of the product.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Solid welding rod; insoluble in water.		
Physical state	Manufactured	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Applicable

Initial boiling point and boiling range (°C)	Not Applicable	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Applicable
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Applicable

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

	Fumes evolved during welding operations may be irritating to the upper-respiratory tract and may be harmful if inhaled.
Inhaled	
	revert to oxyhemoglobin. The biological half life of carbon monoxide in the blood in sedentary adults is 2-5 hours and the
	elimination becomes slower as the concentration decreases. Manganese fume is toxic and produces nervous system effects characterised by tiredness. Acute poisoning is rare although

	acute inflammation of the lungs may occur. A chemical pneumonia may also result from frequent exposure. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.
Ingestion	Not normally a hazard due to physical form of product.
Skin Contact	Skin contact does not normally present a hazard, though it is always possible that occasionally individuals may be found who react to substances usually regarded as inert. Ultraviolet radiation (UV) is generated by the electric arc in the welding process. Skin exposure to UV can result in severe burns, in many cases without prior warning. Exposure to infrared radiation (IR), produced by the electric arc and other flame cutting equipment may heat the skin surface and the tissues immediately below the surface. Except for this effect, which can progress to thermal burns in some situations, infrared radiation is not dangerous to welders. Most welders protect themselves from IR (and UV) with a welder's helmet (or glasses) and protective clothing.
Eye	Fumes from welding/brazing operations may be irritating to the eyes. Ultraviolet (UV) radiation can also damage the lens of the eye. Many arc welders are aware of the condition known as "arc-eye," a sensation of sand in the eyes. This condition is caused by excessive eye exposure to UV. Exposure to ultraviolet rays may also increase the skin effects of some industrial chemicals (coal tar and cresol compounds, for example). Exposure of the human eye to intense visible light can produce adaptation, pupillary reflex, and shading of the eyes. Such actions are protective mechanisms to prevent excessive light from being focused on the retina. In the arc welding process, eye exposure to intense visible light is prevented for the most part by the welder's helmet. However, some individuals have sustained retinal damage due to careless "viewing" of the arc. At no time should the arc be observed without eye protection.
Chronic	On the basis, primarity, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Repeated or prolonged exposure may also damage the liver and may cause a decrease in the heart rate. Systemic poisoning may result from inhalation or chronic ingestion of manganese containing substances. Progressive and permanent disability can occur from chronic manganese poisoning if it is not treated, but it is not fatal. Chronic exposure has been associated with two major effects: bronchilts/pneumonits following inhalation of manganese dusts and 'manganism', a neuropsychiatri disorder that may also arise from inhalation exposures. Chronic exposure to low levels may result in the accumulation of toxic concentrate. Insomia may also arise from inhalation exposures. Chronic exposure to low levels may result in the accumulation of toxic concentrate. Insomia may be an early finding. Chronic poisoning may occur over a 6-24 month period depending on exposure levels. The onset of chronic manganese poisoning is insidious, with apathy, anorexia weakness, headache and spasms. Manganese psychosis follows with cartain definitive features: unaccountable laughter, euphoria, impulsive acts, absentmindedness, mental confusion, aggressiveness and halucinations. The final stage is characterised by flue-like symptoms: faver, chill, nausea, weakness and body aches. Manganese for produce lesions mimicking those found in Parkinsonism. If the disease is diagnosed whilst still in the early stages and the patient is removed from exposure, the course may be revered. Inhalation of manganese dust is no longer believed to be a causative factor in pneumonia. If there is any relationship at all, it appears to be as an aggravating factor to a preexisting condition. Prolonged or repeated dey contact may result in conjuncititis. Manganese is an essential trace element in all

loss of appetite, weight loss, diarrhoea, muscular incoordination and loss of hair. Of the 51 animals exposed, 26 died after the tenth exposure. Exposure to freshly generated MoO2 fume under about the same exposure conditions proved unexpectedly less toxic, with only 8.3% mortality compared with 51% mortality with the dust, and no mortality when the exposure level was reduced

to about one-third (57 mg Mo/m3). Explanation for this unexpected finding was felt to reside in the more rapid solution and elimination of the large surface area fume particle. [Patty's] Exposure of male and female rats to molybdenum trioxide resulted in the development of respiratory system lesions. In the lung, the incidence and severity of chronic alveolar inflammation increased with increasing exposure concentration in male and female rats. In some male rats, exposure to the material resulted in alveolar/ bronchiolar adenomas or carcinomas. Lesions in the nose (hyaline degeneration) and larynx (squamous metaplasia) were considered to be a non-specific defensive or adaptive response to chronic inhalation exposure. Inhalation exposure of mice to molybdenum trioxide was associated with the development of lung neoplasms and an increased incidence of alveolar/ bronchiolar carcinoma or adenoma in both sexes. Chronic inflammatory lesions were not present in the lungs. Lesions of the nose and larynx were similar to those observed in rats. Molybdenum trioxide was not mutagenic in any of five strains of Salmonella typhimurium and did not induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells in vitro. All tests were conducted with or without S9 metabolic activation enzymes. Pneumoconiosis has been described in experimental animals exposed sub-chronically to molybdenum trioxide. The mechanism of molybdenum trioxide action in lung carcinogenicity is not known; the material is not mutagenic. Non-neoplastic lesions of the nose and larynx of rats and in the nose, larynx and lungs of mice were apparently due to the development of a more durable epithelium in response to chronic exposure. The US Department of Health and Human Services (1) concluded that there was equivocal evidence of carcinogenic activity in male F344/N rats based on a marginally significant positive trend of alveolar/ bronchiolar adenoma or carcinoma; that there was no evidence of carcinogenic activity in female F344/N rats; that there was some evidence of carcinogenic activity in male B6C3F1 mice and that there was evidence of carcinogenic activity in female B6C3F1 mice National Toxicology Program: Technical Report Series 462, April 1997 Principal route of exposure is inhalation of welding fumes from electrodes and workpiece. Reaction products arising from electrode core and flux appear as welding fume depending on welding conditions, relative volatilities of metal oxides and any coatings on the workpiece. Studies of lung cancer among welders indicate that they may experience a 30-40% increased risk compared to the general population. Since smoking and exposure to other cancer-causing agents, such as asbestos fibre, may influence these results, it is not clear whether welding, in fact, represents a significant lung cancer risk. Whilst mild steel welding represents little risk, the stainless steel welder, exposed to chromium and nickel fume, may be at risk and it is this factor which may account for the overall increase in lung cancer incidence among welders. Cold isolated electrodes are relatively harmless. Long-term (chronic) exposure to low levels of carbon monoxide may produce heart disease and damage to the nervous system. Exposure of pregnant animals to carbon monoxide may cause low birthweight, increased foetal mortality and nervous system damage to the offspring. Carbon monoxide is a common cause of fatal poisoning in industry and homes. Non fatal poisoning may result in permanent nervous system damage. Carbon monoxide reduces the oxygen carrying capacity of the blood. Effects on the body are considered to be reversible as long as brain cell damage or heart failure has not occurred. Avoid prolonged exposure, even to small concentrations. A well-established and probably causal relationship exists between maternal smoking (resulting in carboxyhaemoglobin levels of 2-7% in the foetus) and low birth weight. There also appears to be a dose-related increase in perinatal deaths and a retardation of mental ability in infants born to smoking mothers. The foetus and newborn infant are considered to be very susceptible to CO exposure for several reasons: Foetal hemoglobin has a greater affinity for CO than maternal hemoglobin. Due to differences in uptake and elimination of CO, the fetal circulation is likely to have COHb levels higher (up to 2.5 times) than seen in the maternal circulation. • The half-life of COHb in fetal blood is 3 times longer than that of maternal blood. Since the fetus has a comparatively high rate of O2 consumption, and a lower O2 tension in the blood than adults, a compromised O2 transport has the potential to produce a serious hypoxia. Carbon monoxide gas readily crosses the placenta and CO exposure during pregnancy can be teratogenic. Carbon dioxide at low levels may initiate or enhance deleterious myocardial alterations in individuals with restricted coronary artery blood flow and decreased myocardial lactate production. - Linde Metal oxides generated by industrial processes such as welding, give rise to a number of potential health problems. Particles smaller than 5 micron (respirables) articles may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences. Exposure to fume containing high concentrations of water-soluble chromium (VI) during the welding of stainless steels in confined spaces has been reported to result in chronic chrome intoxication, dermatitis and asthma. Certain insoluble chromium (VI) compounds have been named as carcinogens (by the ACGIH) in other work environments. Chromium may also appear in welding fumes as Cr2O3 or double oxides with iron. These chromium (III) compounds are generally biologically inert. Welding fume with high levels of ferrous materials may lead to particle deposition in the lungs (siderosis) after long exposure. This clears up when exposure stops. Chronic exposure to iron dusts may lead to eye disorders. Silica and silicates in welding fumes are non-crystalline and believed to be non-harmful. Other welding process exposures can arise from radiant energy UV flash burns, thermal burns or electric shock The welding arc emits ultraviolet radiation at wavelengths that have the potential to produce skin tumours in animals and in over-exposed individuals, however, no confirmatory studies of this effect in welders have been reported.

	ΤΟΧΙΟΙΤΥ	IRRITATION
TALARC A1 Mo	Not Available	Not Available
welding fumes	TOXICITY	IRRITATION

	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Inhalation(Rat) LC50; >5.14 mg/l4h ^[1]	Eye (rabbit) 500mg/24H Mild	
manganese fume	Oral (Rat) LD50; >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
		Skin (rabbit) 500mg/24H Mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
silica welding fumes	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50; 3160 mg/kg ^[2]	Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available	
molybdenum fume	Inhalation(Rat) LC50; >1.93 mg/l4h ^[1]		
	Oral (Rat) LD50; >2000 mg/kg ^[1]		

 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Most welding is performed using electric arc processes - manual metal arc, metal inert gas (MIG) and tungsten inert gas welding (TIG) – and most welding is on mild steel.

In 2017, an IARC working group has determined that "sufficient evidence exists that welding fume is a human lung carcinogen (Group 1).

A complicating factor in classifying welding fumes is its complexity. Generally, welding fume is a mixture of metal fumes (i.e., iron, manganese, chromium, nickel, silicon, titanium) and gases (i.e., carbon monoxide, ozone, argon, carbon dioxide). Welding fume can contain varying concentrations of individual components that are classified as human carcinogens, including hexavalent chrome and nickel. However the presence of such metals and the intensity of exposure to each differ significantly according to a number of variables, including the type of welding technique used and the composition of the base metal and consumable. Nonetheless, IARC did not differentiate between these variables in its decision.

There has been considerable evidence over several decades regarding cancer risks in relation to welding activities. Several case-control studies reported excess risks of ocular melanoma in welders. This association may be due to the presence in some welding environments of fumes of thorium-232, which is used in tungsten welding rods

Different welding environments may present different and complex profiles of exposures. In one study to characterise welding fume aerosol nanoparticles in mild steel metal active gas welding showed a mass median diameter (MMMD) of 200-300 nm. A widespread consensus seems to have formed to the effect that some welding environments, notably in stainless steel welding, do carry risks of lung cancer. This widespread consensus is in part based on empirical evidence regarding risks among stainless steel welders and in part on the fact that stainless steel welding entails moderately high exposure to nickel and chromium VI compounds, which are recognised lung carcinogens. The corollary is that welding without the presence of nickel and chromium VI compounds, namely mild-steel welding, should not carry risk. But it appears that this line of reasoning in not supported by the accumulated body of epidemiologic evidence. While there remained some uncertainty about possible confounding by smoking and by asbestos, and some possible publication bias, the overwhelming evidence is that there has been an excess risk of lung cancer among welders as a whole in the order of 20%-40%. The most begrudging explanation is that there is an as-yet unexplained common reason for excess lung cancer risks that applies to all types of welders. It has been have proposed that iron fumes may play such a role, and some Finnish data appear to support this hypothesis, though not conclusively. This hypothesis

WELDING FUMES

would also imply that excess lung cancer risks among welders are not unique to welders, but rather may be shared among many types of metal working occupations. Welders are exposed to a range of fumes and gases (evaporated metal, metal oxides, hydrocarbons, nanoparticles, ozone, oxides of nitrogen (NOx)) depending on the electrodes, filler wire and flux materials used in the process, but also physical exposures such as electric and magnetic fields (EMF) and ultraviolet (UV) radiation. Fume particles contain a wide variety of oxides and salts of metals and other compounds, which are produced mainly from electrodes, filler wire and flux materials. Fumes from the welding of stainless-steel and other alloys contain nickel compounds and chromium[VI] and [III]. Ozone is formed during most electric arc welding, and exposures can be high in comparison to the exposure limit, particularly during metal inert gas welding of aluminium. Oxides of nitrogen are found during manual metal arc welding and particularly during gas welding. Welders who weld painted mild steel can also be exposed to a range of organic compounds produced by pyrolysis.

In one study particle elemental composition was mainly iron and manganese. Ni and Cr exposures were very low in the vicinity of mild steel welders, but much higher in the background in the workshop where there presumably was some stainless steel welding.

Personal exposures to manganese ranged from 0.01-4.93 mg/m3 and to iron ranged from 0.04-16.29 mg/m3 in eight Canadian welding companies. Types of welding identified were mostly (90%) MIG mild steel, MIG stainless steel, and TIG aluminum. Carbon monoxide levels were less than 5.0 ppm (at source) and ozone levels varied from 0.4-0.6 ppm (at source). Welders, especially in shipyards, may also be exposed to asbestos dust. Physical exposures such as electric and magnetic fields (EMF) and ultraviolet (UV) radiation are also common.

In all, the in vivo studies suggest that different welding fumes cause varied responses in rat lungs in vivo, and the toxic effects typically correlate with the metal composition of the fumes and their ability to produce free radicals. In many studies both soluble and insoluble fractions of the stainless steel welding fumes were required to produce most types of effects, indicating that the responses are not dependent exclusively on the soluble metals

SILICA WELDING FUMES	Lung tumourigenicity of welding furnes was investigated in lung tumour susceptible (AU) strain of mice. Male mice were exposed by pharyngeal aspiration four times (once every 3 days) to 85 ug of gas metal arcmild steal (GMA-MS). GMA-SS causes S(MMA-SS) tume. At 48 weeks post-exposure, GMA-SS group versus sharn control was close to eignificance at 78 weeks post exposure. Tumour incidence in the GMA-SS group versus sharn control was close to eignificance at 78 weeks post exposure. Histopathological analysis of the lungs of these mice showed the GMA-SS group having an increase in preneoplasia/humour multiplicity and incidence compared to the GMA-MS and sharn groups at 48 weeks. The increase in incidence in the GMA-SS exposed mice was significant GMA-SS group was of border-line significance (p = 0.06). At 78 weeks spost-exposure, no statistically significant dMA-SS groups was of border-line significance (p = 0.06). At 78 weeks spost-exposure, no statistically significant dMA-SS groups was of border-line significance (p = 0.06). At 78 weeks spost-exposure, no statistically significant dMA-SS groups was of border-line significance (p = 0.06). At 78 weeks post-exposure, no statistically significant dMA-SS groups was of border-line significance (p = 0.06). At 78 weeks post-exposure is a statistically significant dMA-SS groups was of border-line significance (p = 0.06). At 78 weeks post-exposure (p = 0.06) weeks post-exposure (p = 0.06). At 78 weeks post-exposure (p = 0.06) weeks post-exposure (p = 0.06). The rate of micronuclei was observed in welders (n=27) who worked without protective device compared to controls (n=30). The rate of micronuclei was observed in welders (n=27) who worked without protective device compared to controls (n=30). The rate of micronuclei was observed in welders (p = 0.06). We was also post-exposure (p = 0.06) weeks post-exposure) (p = 0.000 mg/kg/d. In humans, synthetic
	Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected. For Synthetic Amorphous Silica (SAS) Repeated dose toxicity Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet.
MOLYBDENUM FUME	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in

	production. No significant acute toxicological data identified	in literature search.	
Acute Toxicity	✓	Carcinogenicity	✓
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
TALARC A1 Mo	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
welding fumes	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	504h	Algae or other aquatic plants	0.05-3.7mg/l	4
manganese fume	LC50	96h	Fish	>3.6mg/l	2
	EC50	72h	Algae or other aquatic plants	2.8mg/l	2
	EC50	48h	Crustacea	>1.6mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
silica welding fumes	NOEC(ECx)	504h	Crustacea	100mg/l	2
sinca weiging rumes	LC50	96h	Fish	>100mg/l	2
	EC50	72h	Algae or other aquatic plants	~250mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	48h	Algae or other aquatic plants	0.5-80mg/l	4
molybdenum fume	LC50	96h	Fish	211mg/l	2
	EC50	72h	Algae or other aquatic plants	26mg/l	2
	EC50	48h	Crustacea	130.9mg/l	2
Legend:		otox database - Aquatic Toxicity D	e ECHA Registered Substances - Ecotoxicologic Pata 5. ECETOC Aquatic Hazard Assessment Da Centration Data 8. Vendor Data	•	

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Vaste treatment methods	ste treatment methods	
Product / Packaging disposal	 Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. Bury residue in an authorised landfill. Recycle containers if possible, or dispose of in an authorised landfill. 	

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
welding fumes	Not Available
manganese fume	Not Available
silica welding fumes	Not Available
molybdenum fume	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
welding fumes	Not Available
manganese fume	Not Available
silica welding fumes	Not Available
molybdenum fume	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

welding fumes is found on the following regulatory lists	
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs	International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans
manganese fume is found on the following regulatory lists	
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
Australian Inventory of Industrial Chemicals (AIIC)	
silica welding fumes is found on the following regulatory lists	
Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals	International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
Australian Inventory of Industrial Chemicals (AIIC)	

molybdenum fume is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (manganese fume; silica welding fumes; molybdenum fume)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (manganese fume; molybdenum fume)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (silica welding fumes)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	01/11/2019
Initial Date	01/08/2017

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	01/08/2017	Spills (major)
3.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average PC – STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection

end of SDS

TALARC A1 Mo

OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals **DSL: Domestic Substances List** NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.